专为高三考生提供有价值的资讯

当前位置:当书网高考复习高中数学对数函数性质

对数函数性质

时间:2019-11-25保存为WORD

对数函数性质是:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1...

对数函数性质

定义域求解:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}。

值域:实数集R,显然对数函数无界

定点:对数函数的函数图像恒过定点(1,0)

单调性:a>1时,在定义域上为单调增函数

0<a<1时,在定义域上为单调减函数

奇偶性:非奇非偶函数

周期性:不是周期函数

对称性:无

最值:无

零点:x=1

基本性质

1、a^(log(a)(b))=b

2、log(a)(a^b)=b

3、log(a)(MN)=log(a)(M)+log(a)(N)

4、log(a)(M÷N)=log(a)(M)-log(a)(N)

5、log(a)(M^n)=nlog(a)(M)

6、log(a^n)M=1/nlog(a)(M)

其他性质

1.换底公式

log(a)(N)=log(b)(N)÷log(b)(a)

2.log(a)(b)=1/log(b)(a)

3.对数函数的图象都过(1,0)点。

4.对于y=log(a)(n)函数,

①,当0<a<1时,图象上函数显示为(0,+∞)单减。随着a的增大,图象逐渐以(1,0)点为轴顺时针转动,但不超过X=1。

②当a>1时,图象上显示函数为(0,+∞)单增,随着a的增大,图象逐渐以(1.0)点为轴逆时针转动,但不超过X=1。

5.与其他函数与反函数之间图象关系相同,对数函数和指数函数的图象关于直线y=x对称。

小编推荐

1.初中二次函数求根公式是什么

2.反三角函数图像及性质

3.tan三角函数公式有哪些

4.初中三角函数公式大全图解

5.常见三角函数值对照表

6.中外合作办学是什么性质的大学 读完有用吗

7.湖北工业大学国际学院靠谱吗 是什么性质

8.高中三角函数难吗

相关文章

Copyright 2019-2029 http://www.dangshu.com 【当书网】 皖ICP备19022700号-7

声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告